
Income Inequality and the contribution of Geography 
Charles Liebenberg 

30/08/2024 

Purpose  

Community level mental illness, violence, imprisonment, teenage births and drug abuse are 

conditions of a society that rhyme1 with inequality (Wilkinson and Pickett, 2009). The form of 

inequality that is perhaps most on the public consciousness in 2024 is economic inequality. This 

paper aims to quantify economic inequality in taxpayers from Australia and measure the 

contribution of granular geography. 

Background 

Income inequality refers to the distribution and spread of income in a population. For this 

analysis, this refers to the concentration of income amongst taxpayers in Australia.  

To model income inequality, distributional assumptions were required due to the absence of 

individual level data. There is a body of research that indicates log-normal and pareto 

distributions represent a good fit for income 

distributions given their right skewness (i.e. the 

long tail of large incomes) and their domain 

(Clementi, F, 2005). 

Economists commonly theorise that the bottom 

97-99% of a population’s income distribution 

follows a log-normal distribution, with the 

remaining following a Pareto distribution 

(Clementi, F, 2005). Figure 1 demonstrates a log-

log plot of US incomes from 2019 with a log-

normal distribution fit to the data, where a good fit 

is evident for the middle incomes.  

As shown, the fit seems a good match for the incomes 

visually over most of the distribution of income, with 

deviance coming from the tails. For this reason, this analysis will use a Pareto distribution for 

the modelling of incomes that implies the probability of a person earning above a certain 

threshold is proportional to some power of that threshold. At the right tail of the distribution 

(large incomes), the Pareto distribution is a much better fit than the log-normal distribution. 

This is as a result of the increased skewness of the Pareto distribution representing a better fit 

for the long tail of income. 

Methodology 

To model income distributions at a granular location level, public income and demographic data 

was sourced from the ATO and the ABS. 

At a geography level, the data available for analysis amounted to summary statistics (excluding 

variance/standard deviation of income) and the Gini coefficient. This is insufficient for 

 
1 Wilkinson and Picket found that these factors are all negatively correlated to inequality. 

Figure 1: Log-normal log-log plot against US Taxable Income. 



maximum likelihood methods which require individual level data. Therefore, a modified 

method-of-moments approach was taken.  

The Gini coefficient is independent of scale. Subsequently any distribution that can be expressed 

in terms of a shape and scale parameter can calculate the Gini coefficient explicitly as a function 

of shape. This analysis used this result as well as the expected value method of moments to 

estimate shape and scale for the Log-normal and Pareto distributions by SA2 geography (refer to 

Appendix 1 for calculation details).  

After parameter estimation was performed at a granular geographical level, the distributional 

assumptions can be used to make inferences about income inequality. The first tool used for the 

analysis of inequality by location was the Lorenz Curve. 

The Lorenz curve describes cumulative x against cumulative y, normalized to 100%. In the case 

of income distributions, it describes the cumulative share of income owned by the cumulative 

share of people.  

If an income distribution is described by a statistical continuous distribution, then the Lorenz 

curve can be described by the cumulative distribution function. This results in defined functions 

for calculating the Lorenz curve for both log-normal and Pareto distributions (Irwin R., Hautus, 

M 2015). Appendix 2 describes the methodology for the calculation of Lorenz curves using the 

given distributional assumptions. 

Finally, in order to determine the contribution of granular location to overall economic 

inequality, Lerman and Yitzhaki decomposition was used (Lerman, R., Yitzhaki S. 1985). This 

method asserts that the marginal impact of a given factor can be defined using the factor’s own 

Gini coefficient and its share of income and population. Resultingly, an overall Gini can be 

decomposed to its “within-group” inequality, which determines a given locations specific 

inequality amongst all the people who live there, and a “between-group” inequality, which 

determines the inequality between difference locations and hence the contribution of granular 

geography. Appendix 3 describes the calculation method for this decomposition. 

Results 

It was modelled that SA-2 level geography contributed to 22.4% of overall income inequality (or 

0.108 Gbetween of an Australia-wide Gini coefficient of 0.483). It was found that inequality by area 

varies significantly, with the maximum Gwithin observed in the Sydney Eastern suburbs with 0.499 

and the minimum observed in North Adelaide of 0.288. It is hypothesized that a large 

proportion of this area specific income inequality is driven by wealth inequality, which remains 

an area for investigation. This result represents significantly larger inequality than as measured 

by H. Miller and L. Dixie in their state-level analysis that found a 2% contribution at the state 

level. This implies that most geography-driven inequality exists at a more granular level than 

Australian state or territory.  

  



Appendix 1: Parameter Estimation 

Log-normal distribution: 
𝐼𝑛𝑐𝑜𝑚𝑒 ~ 𝐿𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙(𝜇, 𝜎2) 

Estimating shape: 

𝐺𝑖𝑛𝑖 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 = erf (
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Estimating scale: 
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1
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Pareto Distribution 
 

𝐼𝑛𝑐𝑜𝑚𝑒 ~𝑃𝑎𝑟𝑒𝑡𝑜(𝛼, 𝛽) 

Estimating shape: 
if 𝛼 < 1 then distribution of income is perfect equality 

If 𝛼 ≥ 1: 

𝐺𝑖𝑛𝑖 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 =  
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Appendix 2: Estimation of Lorenz curve 

Lorenz curve for the Pareto Distribution 
For the Pareto distribution, it can be shown that2: 

𝐿(𝐹) = 1 − 𝐹(𝑥)1−
1
𝑎 

where F refers to the CDF of the Pareto distribution: 

𝐹(𝑥) = 1 − (
𝛽

𝑥
)𝛼 

 

To get the Lorenz curve as a function of x instead, the inverse of the CDF can be substituted:  

𝐿(𝑥) = 1 − 𝑥(𝐹)1−
1
𝑎 

where x(F) refers to the inverse of the CDF for the Pareto distribution: 

𝑥(𝐹) =
𝛽

(1 − 𝐹(𝑥))
1
𝑎

 

Lorenz curve for the Log-normal distribution 
It has been shown2 that for a log-normal distribution: 

𝐿(𝑥) = 𝜑(𝜑−1(𝑥) − 𝜎) 

where 𝜑 and 𝜑−1 refer to the CDF and inverse CDF for the standard normal distribution 

respectively. 

Non-parametric model 
Economic distributional data is commonly reported at an aggregated level. It is for this reason 

that researchers Sitthiyot T and Holasut K proposed a non-parametric model (i.e. no 

distributional assumption) for estimating a Lorenz curve that requires only three summary 

statistics: the Gini coefficient, the share of income that the top 10% holds, and the share of 

income that the bottom 10% holds. This works because the Gini coefficient has useful 

information about the middle of a distribution, and the bottom/top 10% income share ratio 

holds information about the tails of the distribution. 

Specifically, the functional form for calculation of the Lorenz function assumed was a weighted 

average of the Pareto distribution and the exponential function: 

 

The parameters k and P can both be expressed purely as a function of the Gini coefficient and 

the ratio of the income share of the top/bottom 10% of the income distribution. In addition, the 
research showed that its R2 across a wide range of income distributions was the largest when 

compared to commonly used approximations for the Lorenz curve.3 

 
2 https://www.stat.cmu.edu/~cshalizi/ineq/21/lectures/03/lecture-03.pdf 
3 https://www.nature.com/articles/s41599-021-00948-x 

https://www.stat.cmu.edu/~cshalizi/ineq/21/lectures/03/lecture-03.pdf


Appendix 3: Decomposition of the Gini Coefficient 
An overall Gini coefficient can be decomposed into within-group and between-group 

components, often referred to as the Lerman and Yitzhaki decomposition (1985).  

Within-group Inequality 

The within-group Gini coefficient is calculated by aggregating the Gini coefficients of each 

subgroup (here, geographical locations), weighted by their population share and mean income 

relative to the overall mean income. 

𝐺𝑤𝑖𝑡ℎ𝑖𝑛 = ∑ 𝑝𝑖

𝑖

𝑢𝑖

𝑢
𝐺𝑖 

where: 

 Gi is the Gini coefficient of location i 

ui is the mean income of location i 

pi is the population share of location i 

  

Between-group Inequality 

The between-group Gini coefficient measures inequality due to differences in mean incomes 

between subgroups. 

 

𝐺𝑏𝑒𝑡𝑤𝑒𝑒𝑛 =
1

2𝑢
∑ ∑ 𝑝𝑖𝑝𝑗

𝑗𝑖

|𝑢𝑖 − 𝑢𝑗| 

where: 

 p represents the population share of a location 

u represents the mean income of a location 

i and j represent each pair possible 

 

  



Appendix 4: Data sources 
 

This analysis uses publicly available ABS data for all calculations performed as below. 

Historical data for income and wealth 

https://www.abs.gov.au/statistics/economy/finance/household-income-and-wealth-

australia/latest-release 

 

Geographical data for income 

https://www.abs.gov.au/statistics/labour/earnings-and-working-conditions/personal-

income-australia/latest-release 

 

 

  

https://www.abs.gov.au/statistics/economy/finance/household-income-and-wealth-australia/latest-release
https://www.abs.gov.au/statistics/economy/finance/household-income-and-wealth-australia/latest-release
https://www.abs.gov.au/statistics/labour/earnings-and-working-conditions/personal-income-australia/latest-release
https://www.abs.gov.au/statistics/labour/earnings-and-working-conditions/personal-income-australia/latest-release
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